Exoribonuclease XRN1 is a Therapeutic Vulnerability in Tumors with Intrinsically Elevated Type I Interferon Signaling

Maureen M. Lynes¹, Sophie A. Shen¹, Sunaina P. Nayak¹, Brian A. Sparling¹, Anugraha Raman¹, Jie Wu¹, Scott Ribich^{1,2}, Stephen J. Blakemore¹, and Serena J. Silver¹.

¹Accent Therapeutics, Lexington, MA, USA ²Current Address: Blueprint Medicines, Cambridge, Massachusetts

Exoribonuclease XRN1 is an Exciting Oncology Target and Selective Vulnerability in Tumors with Elevated Interferon

- 5' \rightarrow 3' exoribonuclease 1 (XRN1) degrades single stranded mRNA from the 5' \rightarrow 3' direction and is important for endogenous cellular mRNA turnover¹
- XRN1 can also degrade double-stranded RNA (dsRNA), and plays a role in innate immunity by preventing dsRNA activation of the cytosolic sensors MDA5 and pPKR²
- Analysis of publicly available CRISPR screens has identified XRN1 as a potential synthetic lethality target in tumor cells with intrinsic elevation of a Type I Interferon Stimulated Gene (TISG) signature
- Knockout of XRN1 in TISG high cells results in cell death and downstream activation of the MDA5 and PKR innate immune pathways
- Interferon β (IFN β) stimulation of TISG low cells sensitizes those cells to XRN1 loss Based on these results, and consistent with recently published literature^{3,4,5}, XRN1 is a compelling target for monotherapy in TISG high tumors, and in combination with immunooncology therapeutics

A Type I Interferon Gene Signature Predicts Sensitivity to **XRN1** Inhibition

- Accent TISG score is determined by expression of a custom 26 gene subset of type I interferonstimulated genes that predict XRN1 dependence
- ~15-30% of primary TCGA tumors display elevated Type I Interferon signaling, with enrichment in HNSCC, ovarian, cervical, lung and breast cancer

References

- Jinek et al, Mol Cell, 2011
- 2. Burgess *et al*, Cell Host Microbe, 2015
- 3. Zhou *et al*, bioRxviv, 2023 (preprint)
- 4. Ran et al. Cancer Research 2023 5. Hosseini *et al*, bioRxviv 2023 (preprint)

XRN1 KO Selectively Inhibits Colony Formation in

XRN1 KO Inhibits Proliferation of TISG-High Cells; **TISG-Low Cells Tolerate XRN1 Loss**

- TISG-high and TISG-low cells were transduced with XRN1 or POL2RL (positive control) sgRNA for 12 days, and anti-proliferative activity was measured using the Cell Titer Glo assay
- XRN1 KO leads to robust antiproliferative activity in TISG-high cells; no impact on proliferation of the predicted insensitive TISG-low cells was observed despite XRN1 KO

XRN1 Knockout Induces Apoptosis in TISG-High Cells

- NCI-H1703, NCI-H838, and NCI-H1650 were transduced with XRN1 sgRNA; apoptosis was measured using Caspase 3/7 glo (7 days posttransduction) or Annexin V /7AAD staining (10 days)
- XRN1 KO induces Caspase 3/7 activity robustly in the TISG-high NCI-H1703 cell line but not the NCI-H838 line
- 72.2% of NCI-H1650 cells are Annexin V positive as assessed by flow cytometry at day 7, compared to 21.4% of NT control

TISG-high (NCI-H1650 and NCI-H1703) and TISG-low (NCI-H838 and NCI-H1944) cells were transduced with XRN1 sgRNA and subjected to colony formation assay for 10-14 days

- XRN1 KO dramatically decreases colony formation in cell lines with endogenously high type I IFN signaling
- XRN1 KO does not affect colony formation in the predicted insensitive, **TISG-low cell lines**

Type I Interferon Stimulation Sensitizes TISG Low Cells to XRN1 Loss

- pathway

- that predicts dependency on XRN1
- accumulation of dsRNA downstream of XRN1 loss
- combining XRN1 loss with immunotherapy

XRN1 KO Activates PKR and MDA5 Innate Immune Pathways

- TISG-high and TISG-low cells were transduced with XRN1 sgRNA for 7 days, following which protein and RNA was extracted for western blotting and qPCR
- XRN1 KO leads to an increase in pPKR levels and upregulation of type I interferons in XRN1 dependent TISGhigh cells only; no pPKR or IFN induction is detectable in **TISG-low cells**

Non-Targeting XRN1 sgRNA 1 🗖 XRN1 sgRNA 2

• Induction of peIF2α is observed in XRN1 KO but not WT TISG-low cells upon IFNβ stimulation (96 hours); this corresponds with anti-proliferative effects and is consistent with activation of the MDA5

• Together these results suggest that suggesting that XRN1 KO sensitizes otherwise insensitive cells to activation of the dsRNA response in the presence of elevated exogenous interferon, providing a rationale for combination of XRN1 loss and checkpoint inhibitors

Conclusions

• Accent has developed a gene score (TISG) representing a subset of interferon-stimulated genes

• Knockout of XRN1 using CRISPR validates the selective dependency of TISG-high cell lines on XRN1; TISG-low cell lines tolerate XRN1 loss with no anti-proliferative effects

• Loss of XRN1 activates the PKR and MDA5 innate immune sensors, consistent with

• IFNβ stimulation of a TISG low cell line sensitizes it to XRN1 loss, providing rationale for

• XRN1 is a promising target with mono-therapy potential in TISG high tumors, and the potential to enhance the efficacy of checkpoint inhibitors through modulation of innate immune pathways

Acknowledgements

The authors thank E. Allen Sickmier, Cindy Collins, Alexandra Gardino, and current and former members of the Accent team for helpful discussions